.  MICROFUSION ENDORALE

DR CHETRIT LAURENT-DR MARUANI LUDOVIC
MARSEILLE
Mis en charge immédiate par microfusion endorale.

Mise en charge immédiate avec électrosoudage en bouche. Il s'agit de souder les implants entre eux avec une barrette en titane grade II (Ø 1,0-1,2-1 ,4-1,6-1,8-2,0 mm), utilisation de la soudeuse endorale VS, sans argon et sans apport de matériau. L'objectif est de limiter les micro-mouvements des implants et améliorer le taux de succès de l'osteointegration.

Protocole de pose STARFLY02

L’orientation de la pose de l'implant STARFLY02 est modifiable pendant l’intervention, ce qui permet d’atteindre le parallélisme entre implants.

Après avoir préparé le site implantaire avant le vissage de l'implant , pour un os de type D1/D2 (os dur) utilisez un foret cortical pour préparer l'évasement qui correspond au col de l'implant. Vous allez obtenir une stabilité primaire exceptionnelle.

Nous vous proposons des formations sur l’utilisation des bio-matériaux autologues pour la chirurgie et l’esthétique ainsi que sur la technique d’implantologie de la micro fusion endorale (mise en charge immédiate). 

Nous avons un recul clinique de plus de 30 ans avec le Beta-Tricalcique.

Cas n°1 Implants avec connectique interne compatible Zimmer

STARFLY02 platform - switching . BROCHE INTEGRALE pour la fabrication d'une connexion hexagonal  parfaite.

 

PREFACE - MULTI-TYPE ELECTROWELDED IMPLANTS

This term is used to describe an implantological technique that complies with modern trends of surgery which is gradually becoming less invasive every day. This means less suffering for the patient who also has the advantage of immediate functional benefits.

The adjective "multi-type" refers to the fact that the operator can choose from a wide range of implants with different shapes, lengths and calibre.
This enables the structure of the implant to be adapted to the patient's anatomical characteristics. It does not require preparatory surgery which sometimes involves bone grafting techniques from other anatomical districts.

The atraumatic nature of multi-type electrowelded implantology makes it the preferred technique of first choice, reserving more invasive techniques as second choice - only to be used in the event of failure.
Depending on the characteristics of the specific type of implant used, its immediate or long-term failure will result in small lesions to the bone apparatus, but following spontaneous repair it can be re-utilised after a short interval.

Welding the implants together also leads to a different mode of distributing the stresses acting on the structure which no longer acts as individual implants and instead participates in a joint effort providing mechanical support for the prosthesis. 
The most immediate concept when attempting to imitate the function of an organ is to imitate its form and structure. In practice, however, this is not possible.
Therefore, when attempting to reproduce the tooth it is natural to use the concept of tooth - monoimplant.
But how would an engineer attempt to make up for the lack of gomphosis?
This is a system that perfectly absorbs the functional stress in completely healthy conditions.
This mechanism is absolutely necessary not only as a means of discharging stress, but also to compensate for geometric and structural alterations undergone by the jawbone. All this constitutes a mechanical system comprising the "prosthesis implant structure - bone".

 

However, the individual reactions must interact with one another. 

A) The prosthesis must comply with:
Ante's Law = the overall radicular surface of the posts must be equal or greater than the presumed surface of the replaced teeth.
The flexion and curve of the beam are proportional to the cube of its length and inversely proportional to the cube of its thickness. A bridge beam is subject to bending stress whatever its length. The thrusts transmitted by the intermediate elements to the dental posts differ in intensity and direction from those imposed by single reconstructions. The transfer stresses exerted on a means of anchorage have a medio-distal direction, whereas they are vestibular-lingual on an isolated element. 
Even the discharge of the stress vectors without apparent movement provokes the same effects leading to the perimplant conoid degeneration of monoimplants.
Bone regeneration surgery is itself confirmation of the inadequacy of this method. This technique is not required when electrowelded structures are used

 


B) The mandibular bone can be thought of as a box-type girder with a perimetral structure reinforced by thickening (Mylohyoid lines) and containing cancellous bone reminiscent of a honeycomb structure.

 

Therefore, given that no prosthetic artefact can transmit the stress to the bone structure in an absolutely axial manner, and given that the monoimplant structure lacks any physiological absorption, a discrepancy is created between the flexion of the bone and the rigidity of the implant. On the contrary, in dentures mounted on electrowelded implants the implant complex acquires an adaptability that, like reinforced concrete structures, can follow the flexibility of the underlying bone.
This occurs without disturbing the balance of the transition section at the cortical level (the latter's conoid collapse has never been reported). Owing to its construction method, resting on a monobloc structure in which there is practically no interimplant diastema (namely the distance is so small it can be said to be zero), the prosthesis discharges the stresses without bending.
It is the deep implant structure that follows the bone modulus of elasticity
 
The intraoral welding process is completely innocuous and, based on research by Prof. Mondani, it is performed using a microwelder that acts on the titanium structures using a process of crystal compenetration without the need for other metal. This process is known as syncrystallisation.
Preliminary studies which are now being expanded, carried out at the Department of Biomechanics at Turin Politecnico, highlight the maximum concentration of tensions at the emerging neck of the implant. This fact is confirmed by the clinical observation of the cone of cervical resorption in all unwelded implants, including both the so-called "osteointegrated" and "traditional" models.
This clinical syndrome is not found around electrowelded structures, confirming the hypothesis of a better distribution of stress. These techniques can therefore be used to bypass anatomic districts that would otherwise contraindicate the use of dentures on implants. 
This makes it possible to treat both mandibles with severe resorption and upper jawbones with highly developed sinuses.
The use of metal-ceramic dentures allows optimal cosmetic results to be achieved together with maximum respect for the periodontal structure. It is not necessary to use resins or other materials to achieve the isodromic adaptation of the prosthetic apparatus.

The use of gauged connecting bars allows suitable structures to be created for the anchorage of overdentures that do not require further interventions by dental technicians, resulting in marked savings for the patient. The long follow-up of this method confirms the brilliant immediate and long-term results (more than 30 years). 
However, this should not be confused, as unfortunately occurs, with similar techniques based on completely different biomechanical principles, for which we feel that the term "obsolete" used pejoratively by those who are not familiar with it should be cancelled and replaced by the more precise "tested".

 

PHYSICAL FEATURES

Titanium is a pure element: we find it in nature as oxides and it’s very common on earth’s crust: it’s the 9th element for abundance and the 3th metal to use in mechanical constructions, after Aluminium and Iron. 
It’s included in the periodic table of the elements of the IV group and IV period.
The atomic number is 22 and its trend is first of all metallic, even if it’s a transiction element.Copper Electrodes (Cu) are the priority for the heat squandering created by the electric pulse lasting 250 – 300 milliseconds.

 

SINTERIZATION
compaction of Titanium superior prismes undergoing a great pression united to a temperature increase equal to 70% of that fusion.
SYNCRYSTALLIZATION 
Deep crossover of prismatic crystals through the union of atoms in the construction of the crystal lattice
In the whole welding cycle we can distinguish 3 phase:
- Approaching phase: during which there is only the application of pressure without current
2 - Welding phase: where the pressure and current are simultaneous up to the core fusion
3 - Cooling phase: where there's no current wile the pressure is maintained
COOLING PHASE
It’s also important because in this phase metal crystallizes and you need to keep it under pressure

The passing current will develope an heat as more intense as high is the present resistance,

LAW of JOULE:

Q= heat quantity expressed in calorie degrees (Cal)
J= 
mechanical equivalent of the big calorie expressed 
Joule/Cal (1Cal=4,18x10³ J)
I= 
current intensity in ampere
R= 
electric resistance in Ohm
t= 
time in seconds

 

BIBLIOGRAPHIE

  • Albrektsson T.: Direct bone anchorage of dental implants, J Prosthet Dent 50(2): 255-261, 1983
  • American Academy of Implant Dentistry: Glossary of terms, Oral Implant 12:284, 1986
  • Bellavia C.: Atlante di Implantologia- Masson 1988
  • Bianchi A.: Implantologia e Implantoprotesi - UTET 1999
  • Branemark PI, Zarb G, Albrektsson T: Tissue integrated prostheses?: Osseointegration in clinical dentistry, pp 11-77, 129-145, Chicago, 1985, Quintessence
  • Brunski JB: The influence of force, motion and related quantities on the response of bone to implants. In Fitzgerald JR, edito: Non-cemented total Hip arthroplasty, pp. 7-21, New York, 1988, Raven Press
  • Buser D., Weber H.P., Lang N.P.: Tissue Integration of non-submerged Implants. 1-year results of a prospective Study with 100 ITI hollow-cylinder and hollow-screw Implants- Clin Oral Impl Res 1990, 1:33-40
  • Dal Carlo L.: Modulabilità del carico immediato nello sviluppo del piano terapeutico - Atti del 4° Congresso Internazionale A.I.S.I Verona 18-19 Ottobre 2002, pagg. 216-217 Edizioni ETS 2002, 1980 May; 35(5): 577-9
  • Garbaccio D.: La vite autofilettante bicorticale: principio bio-meccanico, tecnica chirurgica e risultati clinici- Dental Cadmos 6/1981
  • Jaffin RA, Berman CL: The excessive loss of Branemark fixtures in Type IV bone: a 5 year analysis, J Periodontol 62(1): 2-4, 1991
  • Johansson C., Albrektsson T.: Integration of screw implants in the rabbit: a 1-year follow-up of removal torque of titanium implants, Int J Oral Maxillofac Surg 2:69, 1987 Jahn e: Bindegewebige aufhangung bei lattimplantaten: Vorlaufige Mitteilung. Schweiz Monatsschr Zahnheilk 85: 1143, 1975
  • Linkow LI: The endosseous blade: a new dimension in oral implantology, Rev Tri Implant, 5: 13-24, 1968
  • Mc Neill C.: L'occlusione - Basi Scientifiche e Pratica Clinica- Scienza e Tecnica Dentistica Edizioni Internazionali srl/Milano 1999
  • Misch CE, Judy KWM: Classification of partially edentulous arches for implant dentistry, Int J Oral Implant 4: 7-12, 1987
  • Misch CE: Contemporary implant dentistry, Harcourt Publishers 2 ed, Mosby, 1999
  • Mondani P. L., Mondani P. M.: La saldatrice elettrica intraorale di Pierluigi Mondani- Odontostomatologia e Implantoprotesi N° 4/1982
  • Muratori G.: Intraosseal implantation. From the intervention to the prosthesis. VII; Dent Cadmos 1969 May; 37(5): 867-77
  • Pasqualini U.: Ricerche isto-anatomopatologiche in implantologia- Ass. It. Imp. All. 1972; 5: 40-7
  • Pierazzini A.: implantologia- UTET 1992
  • Schwartz-Arad D., Chaushu G.: The ways and Wherefores of immediate Placement of Implants into fresh extraction Sites: a Literature Review- Journal of Periodontology, 1997, vol 68, N° 10
  • Siegele D., Soltasz U.: Numerical investigations of the influence of implant shape on stress distribution in the jaw bone, int J Oral Maxillofac Impl 4: 333-340, 1989
  • Silvestrini-Biavati M., Malvicini M.: 1960-1985: 22 years' experience with bio-alloplastic implants; Parodontol Stomatol (Nuova) 1985 Sep-Dec; 24(3): 57-65
  • Tramonte S.U.: Implantologia Pratica- Focus 1/1999: 11-14
  • Tramonte S.M.: Self-threading endosseous screw; Attual Dent 1989 Feb 19; 5(7): 44-9
    • Albrektsson T.: Direct bone anchorage of dental implants, J Prosthet Dent 50(2): 255-261, 1983
    • American Academy of Implant Dentistry: Glossary of terms, Oral Implant 12:284, 1986
    • Bellavia C.: Atlante di Implantologia- Masson 1988
    • Bianchi A.: Implantologia e Implantoprotesi - UTET 1999
    • Branemark PI, Zarb G, Albrektsson T: Tissue integrated prostheses?: Osseointegration in clinical dentistry, pp 11-77, 129-145, Chicago, 1985, Quintessence
    • Brunski JB: The influence of force, motion and related quantities on the response of bone to implants. In Fitzgerald JR, edito: Non-cemented total Hip arthroplasty, pp. 7-21, New York, 1988, Raven Press
    • Buser D., Weber H.P., Lang N.P.: Tissue Integration of non-submerged Implants. 1-year results of a prospective Study with 100 ITI hollow-cylinder and hollow-screw Implants- Clin Oral Impl Res 1990, 1:33-40
    • Dal Carlo L.: Modulabilità del carico immediato nello sviluppo del piano terapeutico - Atti del 4° Congresso Internazionale A.I.S.I Verona 18-19 Ottobre 2002, pagg. 216-217 Edizioni ETS 2002, 1980 May; 35(5): 577-9
    • Garbaccio D.: La vite autofilettante bicorticale: principio bio-meccanico, tecnica chirurgica e risultati clinici- Dental Cadmos 6/1981
    • Jaffin RA, Berman CL: The excessive loss of Branemark fixtures in Type IV bone: a 5 year analysis, J Periodontol 62(1): 2-4, 1991
    • Johansson C., Albrektsson T.: Integration of screw implants in the rabbit: a 1-year follow-up of removal torque of titanium implants, Int J Oral Maxillofac Surg 2:69, 1987 Jahn e: Bindegewebige aufhangung bei lattimplantaten: Vorlaufige Mitteilung. Schweiz Monatsschr Zahnheilk 85: 1143, 1975
    • Linkow LI: The endosseous blade: a new dimension in oral implantology, Rev Tri Implant, 5: 13-24, 1968
    • Mc Neill C.: L'occlusione - Basi Scientifiche e Pratica Clinica- Scienza e Tecnica Dentistica Edizioni Internazionali srl/Milano 1999
    • Misch CE, Judy KWM: Classification of partially edentulous arches for implant dentistry, Int J Oral Implant 4: 7-12, 1987
    • Misch CE: Contemporary implant dentistry, Harcourt Publishers 2 ed, Mosby, 1999
    • Mondani P. L., Mondani P. M.: La saldatrice elettrica intraorale di Pierluigi Mondani- Odontostomatologia e Implantoprotesi N° 4/1982
    • Muratori G.: Intraosseal implantation. From the intervention to the prosthesis. VII; Dent Cadmos 1969 May; 37(5): 867-77
    • Pasqualini U.: Ricerche isto-anatomopatologiche in implantologia- Ass. It. Imp. All. 1972; 5: 40-7
    • Pierazzini A.: implantologia- UTET 1992
    • Schwartz-Arad D., Chaushu G.: The ways and Wherefores of immediate Placement of Implants into fresh extraction Sites: a Literature Review- Journal of Periodontology, 1997, vol 68, N° 10
    • Siegele D., Soltasz U.: Numerical investigations of the influence of implant shape on stress distribution in the jaw bone, int J Oral Maxillofac Impl 4: 333-340, 1989
    • Silvestrini-Biavati M., Malvicini M.: 1960-1985: 22 years' experience with bio-alloplastic implants; Parodontol Stomatol (Nuova) 1985 Sep-Dec; 24(3): 57-65
    • Tramonte S.U.: Implantologia Pratica- Focus 1/1999: 11-14
    • Tramonte S.M.: Self-threading endosseous screw; Attual Dent 1989 Feb 19; 5(7): 44-9

 

References microfusion endorale
Abboud, M., Koeck, B., Stark, H., Wahl, G. &
Paillon, R. (2005) Immediate loading of single
tooth implants in the posterior region. International
Journal of Oral & Maxillofacial Implants
20: 61–68.
Abrahamsson, I., Berglundh, T., Sekino, S. &
Lindhe, J. (2003) Tissue reactions to abutment
shift: an experimental study in dogs. Clinical
Implant Dentistry and Related Research 5: 82–
88.
Baggi, L., Cappelloni, I., Di Girolamo, M., Maceri,
F. & Vairo, G. (2008) The influence of implant
diameter and length on stress distribution of
osseointegrated implants related to crestal
bone geometry: a three-dimensional finite
element analysis. J Prosthetic Dentistry 100:
422–431.
Branemark, P.I., Engstrand, P. Ohrnell, L.O., Gro¨ndahl,
K., Nilsson, P., Hagberg, K., Darle, C. &
Lekholm, U. (1999) Branemark Novum: a new
treatment concept for rehabilitation of the edentulous
mandible. Preliminary results from a prospective
clinical follow-up study. Clinical
Implant Dentistry and Related Research 1: 2–16.
Brunski, J.B., Moccia, A.F., Jr, Pollack, S.R.,
Korostoff, E. & Trachtenberg, D.I. (1979) The
influence of functional use of endossous dental
implants on the tissue–implant interface. I. Histological
aspects. Journal of Dental Research 58:
1953–1969.
Carter, D.R., Van Der Meulen, M.C. & Beaupre´ ,
G.S. (1996) Mechanical factors in bone growth
and development. Bone 18S: 5–10.
Degidi, M., Gehrke, P., Spanel, A. & Piattelli, A.
(2006a) Syncrystallization: a technique for temporization
of immediately loaded implants with
metal-reinforced acrylic resin restorations. Clinical
Implant Dentistry and Related Research 8:
123–134.
Degidi, M., Iezzi, G., Scarano, A. & Piattelli, A.
(2008a) Immediately loaded titanium implant
with a tissue-stabilizing/maintaining design (‘beyond
platform switch’) retrieved from man after 4
weeks: a histological and histomorphometrical
evaluation. A case report. Clinical Oral Implants
Research 19: 276–282.
Degidi, M., Nardi, D. & Piattelli, A. (2008b) Immediate
loading of the edentulous maxilla with a
final restoration supported by an intraoral welded
titanium bar: a case series of 20 consecutive cases.
Journal of Periodontology 79: 2207–2213.
Degidi, M., Nardi, D. & Piattelli, A. (2009)
Immediate rehabilitation of the edentulous mandible
with a definitive prosthesis supported by
an intra-oral welded titanium bar. International
Journal of Oral & Maxillofacial Implants 24:
342–347.
Degidi, M. & Piattelli, A. (2005) Comparative
analysis study of 702 dental implants subjected
to immediate functional loading and immediate
non-functional loading to traditional healing periods
with a follow-up of up to 24 months. International
Journal of Oral & Maxillofacial
Implants 20: 99–107.

Degidi, M., Piattelli, A., Gehrke, P., Felice, P. &
Carinci, F. (2006b) Five-year outcome of 111
immediate nonfunctional single restorations.
Journal of Oral Implantology 32: 277–285.
Hruska, A.R. (1987) Intraoral welding of pure
titanium. Quintessence International 18: 683–
688.
Jaffin, R.A., Kolesar, M., Kumar, A., Ishikawa, S.
& Fiorellini, J. (2007) The radiographic bone
loss pattern adjacent to immediately placed,
immediately loaded implants. International
Journal of Oral & Maxillofacial Implants 22:
187–194.
Jemt, T. (1997) Regeneration of gingival papillae
after single-implant treatment. International Journal
of Periodontics & Restorative Dentistry 17:
327–333.
Klee de Vasconcellos, D., Bottino, M.A., Saad, P.A.
& Faloppa, F.F. (2006) A new device in immediately
loaded implant treatment in the edentulous
mandible. International Journal of Oral & Maxillofacial
Implants 21: 615–622.
Merz, B.R., Hunenbart, S. & Belser, U.C. (2000)
Mechanics of the implant-abutment connection:
an 8-degree taper compared to a butt joint connection.
International Journal of Oral & Maxillofacial
Implants 15: 519–526.
Mondani, P.L. & Mondani, P.M. (1982) The Pierliugi
Mondani intraoral electric solder. Principles
of development and explanation of the solder
using syncrystallization. Rivista Odontostomatologia
e Implantoprotesi 4: 28–32.
Nentwig, G.H. (2004) Ankylos implant system:
concept and clinical application. Journal of Oral
Implantology 30: 171–177.
Pilliar, R.M., Lee, J.M. & Maniatopoulos, C. (1986)
Observations on the effect of movement on bone
ingrowth into porous-surfaced implants. Clinical
Orthopaedics 208: 108–113.
Romanos, G.E. (2004) Present status of immediate
loading of oral implants. Journal of Oral Implantology
30: 189–197.
Romanos, G.E. (2005) Immediate loading with
complete implant-supported restorations in an
edentulous heavy smoker: histologic and histomorphometric
analysis. International Journal of
Oral & Maxillofacial Implants 20: 282–290.
Romanos, G.E. & Nentwig, G.H. (2006) Immediate
versus delayed loading of implants in the posterior
mandible: a 2-year prospective clinical study
of 12 consecutive cases. International Journal of
Periodontics & Restorative Dentistry 26: 459–
469.
Schwarz, M.S. (2000) Mechanical complications of
dental implants. Clincal Oral Implants Research
11S1: 156–158.
Szmukler-Moncler, S., Salama, H., Reingewirtz, Y.
& Dubruille, J.H. (1998) Timing of loading and
effect of micromotion on bonedental implant
interface: review of experimental literature.
Journal of Biomedical Materials Research 43:
192–203.